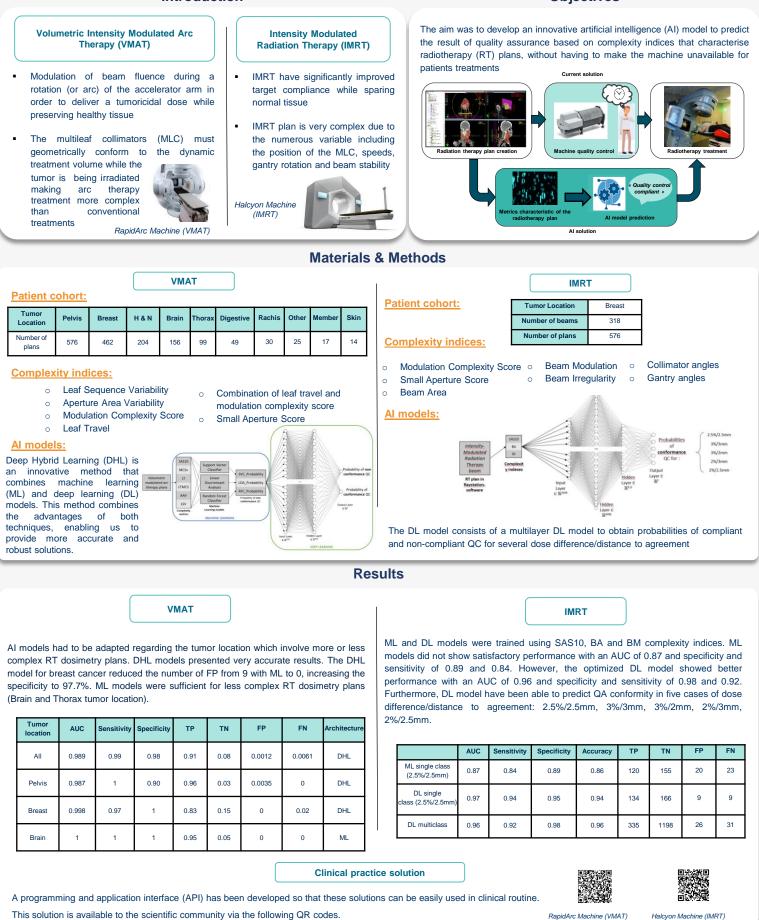


Patient-Specific Quality Assurance in Radiotherapy: Prediction with Deep Hybrid Learning for VMAT plans on Rapid Arc and IMRT plans on Halcyon machines Noémie N Moreau ¹², Christine Boutry¹, Laurine Bonnor¹, Cyril Jaudet¹, Nadia Falzone³, Alain Batalla¹, Laetitia Lechippey ¹, Cindy Bertaut⁴,


Aurélien Corroyer-Dulmont¹

sfpm 💒

¹Medical Physics Department, CLCC François Baclesse, Caen, France ; ²Normandie University, UNICAEN, CNRS, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France ; ³GenesisCare Theranostics Building 1 & 11, The Mill, 41-43 Bourke Road, Alexandria, NSW 2015, Australia ; ⁴Medical Physics Department, Cherbourg Hospital, 501000 Cherbourg, France

Introduction

Objectives

Conclusion

Patient-specific QA requires time on the treatment machine, during which time it is impossible to treat patients. Therefore, the objective of this study was to propose an alternative solution for patient-specific QA that would make treatment machines more available to patients. To predict patient-specific QA compliance for treatments, we developed AI models based on complexity indices. The results were conclusive for the VMAT in Rapid Arc machine as well as for IMRT in Halcyon machine. To implement this study in clinical routine, APIs were developed.